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ABSTRACT 

Using models of Peano Arithmetic, we solve a problem of Sikorski by showing 
that the existence of an ordered field of cardinality )t with the 
Bolzano-Weierstrass property for K-sequences is equivalent to the existence of 
a K-tree with exactly A branches and with no ~¢-Aronszajn subtrees. 

In a series of several papers [18], [19], [20] Sikorski considered the general 

problem of extending various algebraic and topological properties of the reals 

which depend, usually implicitly, on the cardinal parameter  ~,  to properties 

depending on some uncountable regular cardinal. For example,  an ordered field 

has the Bolzano-Weierstrass  property if every bounded sequence has a con- 

vergent subsequence. (By a sequence we mean,  of course, an l~,,-sequence.) More 

generally, for a regular cardinal K, an ordered field F is said to have the 

Bolzano-Weierstrass  property for K-sequences (briefly, F is BW(K)) if I Ft => K 

and every bounded K-sequence has a convergent  K-subsequence. Sikorski [18] 

constructs for each uncountable regular K a BW(K) ordered field of cardinality 

K. (See Corollary 2.7 for an essentially different construction of a BW(K) ordered 

field.) He mentions as an open problem (p. 88 of [18]) the existence of a BW(K) 

ordered field of cardinality > K. Our main result in this paper  is the following 

theorem. 

THEOREM. Suppose A >= K > 1~,, are cardinals with K regular. Then the follow- 

ing are equivalent: 

(1) There is a BW(K) ordered field of cardinality A. 

(2) There is a K-tree with exactly A branches and with no K-Aronszajn subtrees. 
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There had already been very strong evidence for this theorem. It was shown 

by Cowles and LaGrange [3], using a theorem of Juh~sz and Weiss [7], that the 

existence of a BW(K) ordered field of cardinality > K implies the existence of a 

K-Kurepa tree with no K-Aronszajn subtrees. Jensen (see Devlin [4]) had shown 

the existence of an N,-Kurepa tree with no N~-Aronszajn subtrees, assuming 

V = L. (The correctness of this proof has been questioned; at best, it is rather 

involved.) Subsequently, Devlin [6] gave a simpler construction of such trees, 

also assuming V = L. It is known from results of Solovay and Silver [21] that the 

nonexistence of an NrKurepa  tree is equiconsistent with the existence of an 

inaccessible cardinal. However,  the exact consistency strength of the nonexis- 

tence of an •,-Kurepa tree with no N,-Aronszajn subtrees is unknown. 

Todor~evi~ [22] showed that there is a model in which, for every regular cardinal 

K, there is a K-Kurepa tree with no K-Aronszajn subtrees. Then Devlin [5], and 

later Velleman [23], proved that the constructible universe L is such a model. 

The first example of a BW(K) ordered field of cardinality > K was given by 

Manevitz and Miller [12] who showed that it is consistent to assume the existence 

of such fields when K = i~. They mention that Velleman subsequently proved, 

assuming V = L, that for every regular K there is a BW(K) field of cardinality K +. 

The proof of the hard direction (2) ::~ (1) of the Theorem makes use of a 

construction of models of Peano Arithmetic built along a tree. Such models were 

first constructed in [13], and this construction was corrected and refined in [14]. 

That  these models are useful in constructing ordered fields was first observed by 

Keisler in [9], which is an unpublished manuscript summarized by [10]. 

1. Ordered fields and trees 

In this section we discuss some preliminaries concerning ordered fields and 

trees and the relationships between them. 

Scott [16] defined the notion of a complete ordered field, and later Keisler [9] 

referred to such ordered fields as Scott complete. An initial segment I of an 

ordered field F is Dedekindean if for each positive 6 E F there is x E I such that 

x + 6 ~ I. Then F is Scott complete if every Dedekindean initial segment has a 

supremum in F. 

The following basic result is proved in [16]. 

THEOREM 1.1. Let F be an ordered field. Then there is a Scott complete ordered 

.field f: in which F is dense. Furthermore, F is unique up to isomorphism over F. 

The ordered field _¢ in the theorem is the Scott completion of F. Note that the 
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Scott completion need not be real-closed; however, if F is real-closed then so is 

Because of the presence of the linear order on an ordered field F, it makes 

sense to refer to its cofinality cf(F) (which is called the character of F in [18]). 

This is an important cardinal invariant of F because of the following observation 

of Sikorski. If K is a regular cardinal and F has a convergent r -sequence which is 

not eventually constant, then c f ( F ) =  r. 

A K-sequence (a~ : u < K) is Cauchy if for every positive 6 E F there is some 

u < K such that l a,  - as I < 6 whenever u < a,/3 < K. Cowles and LaGrange [3] 

defined an ordered field F to be K-complete if c f (F )=  K and every Cauchy 

~:-sequence converges. One easily deduces that F is K-complete iff F is Scott 

complete and c f (F )=  K. 

According to Keisler [9] a subset N of an ordered field F is an integer set if the 

following three conditions are met: (1) N is a set of non-negative elements of F ;  

(2) 0 E N;  and (3) for each positive x E F there is a unique n E N such that 

n =< x < n + 1. Notice that every ordered field has an integer set. The integer set 

is unique only for Archimedean ordered fields; however, any two integer sets of 

an ordered field are order-isomorphic. 

PROPOSITION 1.2. Every ordered field F has an integer set which is closed under 
addition. 

PROOF. For the purposes of this proof let us call an additive subgroup G C_ F 

discrete if 1 is the only element x E G such that 0 < x _-< 1. A discrete subgroup 

G is closed iff whenever 0 <  k < ~o and y E F, where ky ~ G and G U{y} 

generates a discrete subgroup, then y C G. The desired conclusion follows from 

the following three facts. 

(1) There is a discrete subgroup. 

(2) Every discrete subgroup is a subgroup of a closed discrete subgroup. 

(3) If G is a closed discrete subgroup and a E F is such that for no b E G, 

a _<-b <= a + 1, then G U{a} generates a discrete subgroup. 

To obtain the desired conclusion, let G be a maximal discrete subgroup, the 

existence of which follows easily from (1) and Zorn's Lemma. By (2) G is closed, 

so it follows from (3) that the set N = {x E G : x => 0} is an integer set closed 

under addition. 

We now prove (1)-(3). Fact (1) is trivial, and by Zorn's Lemma so is (2). We 

assume (3) is false and derive a contradiction. 

Suppose G U {a} does not generate a discrete subgroup. Then there is a least 

positive k < ~o such that for some x C G 
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(*) O< ka - x  < 1. 

Let y = x/k. Clearly then, y ~  G because a < y + 1 < a + 1. Since G is closed, 

this implies that G U {y } generates a subgroup which is not discrete. Therefore,  

there are z E G and positive n < k such that 

(**) 0 <  n y -  z < 1. 

Multiplying (*) by n/k and adding this to (**) yields 

O < n a - z < n / k + l .  

Thus, either 

O < n a - z  < l  

o r  

O < n a - ( z  + l ) < l .  

But either case contradicts the minimality of k. • 

CoMes [2] generalizes the notion of an Archimedean ordered field to a 

K-Archimedean ordered field, where K is any infinite cardinal. An ordered field 

is K-Archimedean iff every integer set is K-like. Clearly, the Scott completion of 

a K-Archimedean ordered field is K-Archimedean. In fact, any integer set for F 

is also an integer set for if'. (Keisler [9] defines when an ordered field is monotone 
complete, and then proves that if cf(F) -- K, then F is monotone complete iff F is 

Scott complete and K-Archimedean.) 

Cowles and LaGrange [3] make the following definition. An ordered field F is 

K-Ramsey iff c f (F )=  ~ and every K-sequence has a monotone K-subsequence. 

They then prove the following characterization of BW(K). 

TrtEOaEM 1.3. An ordered field F is BW(K) if/ it is K-Archimedean, K- 

Ramsey and Scott complete. 

We next turn to trees. A tree is a partially ordered set (T, < ) such that for any 

a E T, the set d = {x E T : x < a } of its predecessors is well-ordered. The order 

type of ~ is the rank of a, denoted by rk(a).  The height of a tree T is 

ht(T)  = {rk(a) : a E T}. For each u < ht(T) we let Tv = {a ~ T : rk(a)  = u}. A 

branch B of T is a linearly ordered subset of T such that B ('1 T~ / • for each 

u < ht(T). We let [T] denote the set of branches of T. 

For a regular cardinal K, we say that T is a K-tree if ht (T)  = K and ] T, [ < K for 

each v < K. 



Vol. 50, 1985 PEANO ARITHMETIC 149 

A K-tree T is a r-Aronszajn  tree provided [T] = Q; it is a r-Kurepa tree 

provided ][T]I > r. 
Keisler [9] associated trees with each non-Archimedean ordered field F in the 

following way. Suppose that c f ( F ) =  r and that (c. :u  < r )  is an increasing, 

cofinal sequence of positive elements of F such that cv+l/c, is infinitely large for 
each v < r. For each v < r let - ,  be an equivalence relation defined on [0, 1] v, 

the closed unit interval of F, according to the following: x - ,  y iff Ix - y I c, is 

not infinitely large. Let T be the set of all equivalence classes of all the 

equivalence relations -v .  Then (T, _3 ) is a tree. We will refer to such a tree as a 
Keisler tree of F. 

PROPOSITION 1.4. Let F be a non-Archimedean ordered field, r = cf(F), and T 

a Keisler tree of F. Then ht(T) = r, and for each x E [0, 1] F there is a unique 

B E [T] such that ~ B -- {x}. Furthermore: 

(1) F is Scott complete iff 0 B ~  (~ for each B E [T]; 

(2) F is r-Archimedean iff T is a K-tree; 

(3) F is BW(K) iff T is a K-tree with no r-Aronszajn  subtrees. 

The proof, except for (3), is at least implicit in Keisler [9]. Statement (3) 

follows easily from Theorem 1.3 and the following lemma, which we leave 

unproved, but which is easily proved in the style of the proof of Proposition 2.4 

of [22]. 
Let (T, < ) be a tree, and suppose < is some linear order of T. The ordering 

causes [ T] to be ordered lexicographically. We will refer to such linear orders on 

IT] as lexicographical orders without specifying < .  

LEMMA 1.5. Let (T, < ) be a K-tree for some regular r such that T = [._J [T] 

and [T] is ordered lexicographically. Then the following are equivalent: 

(1) T does not have a r-Aronszajn  subtree. 

(2) Every subset of [ T] of cardinality r contains a subset of cardinality r which 

is either well-ordered or inversely well-ordered. 

COROLLARY 1.6. (1) I f  there is a r-Archimedean, Scott complete ordered field 

of cardinality h, then there is a K-tree with exactly h branches. 

(2) I f  there is a BW(K) ordered field of cardinality h, then there is a K-tree with 

exactly A branches but with no r-Aronszajn  subtrees. 

Corollary 1.6(1) is from Keisler [9]; Cowles and LaGrange [3] give another 

argument for successor r. Corollary 1.6(2) is essentially proved in [3] by first 

showing that a r -Archimedean ordered field F is BW(K) iff [0, 1] ~ is K-compact, 
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and then invoking the Juh~isz-Weiss result [4] that there is a K-metrizable, 

K-compact space of cardinality h iff there is a K-tree with exactly h branches and 

with no K-Aronszajn subtrees. 

Keisler [9] also proved the converse to a less precise version of Corollary 

1.6(1) by showing that if there is a K-Kurepa tree with exactly h branches, then 

there is a K-Archimedean, Scott complete ordered field of cardinality at least h. 

We will prove in Corollaries 3.4 and 3.3 the exact converses of both parts of 

Corollary 1.6. 

2. Models of Peano Arithmetic 

This section is concerned with models of Peano Arithmetic (PA), especially in 

regard to their connection with the Theorem stated in the introduction. 

The construction of the reals from the natural numbers is a very familiar one, 

and can be done in various ways which result in the same ordered field. One 

standard way is first to construct the ordered field of quotients, and then to let 

the reals be the completion of this field. This same sort of construction works for 

arbitrary models N of Peano Arithmetic: first form the ordered field of 

quotients, and then its Scott completion. We wilt denote this resulting ordered 

field by R N and refer to its elements as reals of N. Clearly, the set N is an integer 

set of R ~. 
If N is a model of PA, then a subset X C_ N is a class if for any a E N, the set 

{x ~ X : x _-< a } is definable in N. Let Class(N) be the set of classes of N. We will 

describe R x in another way showing the close relationship between the reals of 

N and the classes of N. Correspond with each class X the formal infinite series 

E~x 2 ~+u. For each a ~ N let 

s, = E 2-(i+l~- 
i c X  

Since X is a class, so is in the field of quotients and hence is a real of N. It is easily 

seen that the initial segment 

{ x E R  x : x < s ~  for s o m e a E N }  

is Dedekindean, and therefore has a supremum in the closed unit interval of R s. 

We will denote this supremum by r(X). For every real x of N in the closed unit 

interval there is a class X (which is unique except for the usual redundancy 

occurring in decimal expansions) so that r (X)= x. Specifically, r is a bijection 

from the set of all classes X for which N \ X is unbounded to the half-open unit 

interval [0, 1) of R x. 
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We now easily obta in  the following propos i t ion  obse rved  by Keister  [6]. 

PROPOSITION 2.1. For any model N of PA, I R ' I  = IClass(N)  l. 

It is also quite easy to see that  the next  propos i t ion  is true. 

PROPOSITION 2.2. For any model N of PA, R ' is real-closed. 

To prove  Proposi t ion 2.2, consider  some  polynomia l  p(x)  over  the quot ient  

field of N such that  for e lements  qo, q~ in the quot ient  field, 0 < q0 < q~ < 1 and 

p(q~,) < 0 < p(q,). Then  one easily constructs  an X E Class (N)  such that  q~ < 

r ( X ) <  q, and p(r (X) )  = O. 

Each model  N of PA has associated with it a part ial ly o rde red  set (N, <3) which 

fails to be a tree only because it is not wel l - founded (unless N is the s tandard  

model) .  To  be definitive we make  the following definitions in PA. Let  Ih(x) = k 

iff 2 k =< x + I < 2  ~+'. For  each d < lh(x),  let (x)a E{O, 1} be the d - th  digit in the 

binary expansion of x + 1. Finally, let x <3 y iff l h ( x ) < l h ( y )  and for each 

d < lh(x), (x)d = (y)d. For a model  N of PA,  a subset  B C_ N is a branch if B is 

l inearly o rde red  by <3 and for  each k ~ N there  is x E B such that  lh(x) = k. 

Each  branch of N is a class. The re  is a natural  one- to -one  co r r e spondence  

be tween  branches  and classes in which the branch B is associated with the class 

{d E N : (x)~ = 1 for  some x ~ B such that  d < lh(x)} .  

We  say that  a subset  X C N is a cover in N i l  X A B ¢ Q 5  for each branch B of 

N. Then ,  N is compact if each cover  has a bou nded  subcover .  Tha t  the s tandard  

model  of PA is compac t  is essentially just K6nig ' s  L e m m a .  

PROPOSITION 2.3. If N is compact, then N is K-like for some regular K. 

PROOF. Suppose  N is not K-like for any regular  K. Let  )t = cf(N).  Then  there  

is a sequence  (b, • a </~ ) of distinct e lements  of N, where  lh(b,, ) = lh(bo) for each 

a < )t. Le t  (ca : a < ,~) be an u n b o u n d e d  sequence  of e lements  of N such that  

be <3 ca for  each a <,~. Let  Co = {co • a < A} and let C = {x ~ N "  Cot.3{x} is an 

antichain}. 

Clear ly Co C_ C and C is a cover  in N. Any  subcover  of C must  include Co 

and so must  be unbounded .  The re fo re ,  N is not compact .  • 

PROPOSITION 2.4. Let N be K-like for some regular K. Then N is compact iff 

(N, <3) has no K-Aronszajn subtrees. 

PROOF. Let  A C_ N be a K-Aronsza jn  tree,  and let C = {x E N "  for  no a E A 

is x _-< a}. Clearly,  C is a cover,  for if B f3 C = Q for some branch  B, then 

B f3 A ~ [A ]. It is also clear that  C has no bounded  subcover .  Let  C~ C C be a 
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subcover, and let a E A be such that lh(a) is arbitrarily large. Let B C_ N be a 

branch such that a E B. Then, since C,, is a subcover, there is x ~ Co t3 B. 

Clearly a <~ x so that l h (x )>  lh(a). Thus C0 is unbounded. This proves N is not 

compact. 

Conversely, suppose Ar is not compact, and let R C N be well-ordered and 

unbounded. Let C = {c~ : u < K} be a cover with no bounded subcover. We can 

assume that if c,, <~ c,, then u </z.  Let X _C C be a maximal antichain. Then X is 

unbounded; for, if lh(x) < a for each x E X, then {c E C : lh(c) < a} would be a 

bounded subcover of C. Then A ={a  ~ N : a  <Jx for some x ~ X ,  and 

lh(a) ~ R} is a K-Aronszajn subtree of (N, <~). • 

The next proposition gives the reason for introducing compact models of PA. 

PROPOSITION 2.5. L e t N b e  a modelofPA.  Then R x is BW(K) iff N i s  compact 

and cf(~f)= K. 

PROOV. Suppose R x is BW(K). Then ?¢" is K-like since it is an integer set, and 

R ~ is K-Ramsey by Theorem 1.3. Then, from Lemma 1.5 it follows that (N, <~) 

has no K-Aronszajn subtrees, so by Proposition 2.4, ?(  is compact. 

Conversely, suppose ?¢" is compact and cf(N)--  K. By Proposition 2.3, • is 

K-like. Again using Lemma 1.5, we can get that R ~' is K-Ramsey, hence BW(K). 

Our aim, therefore, becomes to construct compact models of Peano Arith- 

metic having many classes. As a warm-up for the next section, we will construct 

some compact models. The natural way to get such models produces models 

which have an additional interesting property. Recall from [8] or [15] that a 

model X of PA is rather classless if each class of X is definable. Rather  classless 

models are most easily constructed by means of chains of conservative exten- 

sions. If N < J//, then J / i s  a conservative extension of a~ if X A N is definable in 

2¢" whenever X is definable in ~ .  Conservative extensions of models of PA are 

necessarily end extensions. The extension ~/ '< J /  is simple if there is some 

a E M \ N  such that ~ has no proper, elementary substructure containing 

N U {a}. The fundamental theorem of MacDowell-Specker [11] says that every 

model of PA has a simple, conservative extension. 

PROPOSITION 2.6. Let No be a model of PA and K >lNol  a regular cardinal. 

Then ?¢'o has a conservative extension N which is compact, K-like and rather 

classless. 

PROOF. Form a continuous chain (X, • u < K) of models such that each Nv+l 

is a simple, conservative extension of X,. Let  Ar = t,.J {N, : u < K}. Clearly, 2¢" is a 
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K-like, conservative extension of ,No. It is rather classless by Lemma 3.1 of [15]. 

Now suppose that (N, ,q)  has a r -Aronsza jn  subtree A. Let  H =  

{x E N : x ~ a for some a E A }. Then, H contains no branches of W. Since r 

is regular and uncountable, there is a < r such that (W,, H A N~ ) < (Xo, H) .  Let 

b E H \ N ~  and then set B ~ = { x E N , ' x , O b } .  Since all the extensions are 

conservative, B~ is a definable branch of 2(~. The same formula defining B, in W~ 

defines a branch B of 2¢'. But B C_ H since B~ _C H, and this is a contradiction. • 

COROLLARY 2.7. For each consistent extension "2, of PA and each regular 

r > No, there is a BW(K) ordered field with an integer set which is a model of "Z. 

We remark that the model 2¢" constructed in the proof of Proposition 2.6 has 

the property that for each regular A > J N0], (N, <~ ) has no Aronszajn A-subtree. 

Based on the proof of Proposition 2.6 one might think that for regular K, every 

K-like, rather classless model of PA is compact. That is, however, not the case. 

In the next section we give a definitive result (Corollary 3.5) in this regard. For 

now, we present another example. 

PROPOSITION 2.8. Suppose W is a recursively saturated, rather classless model 
of PA. Then 2¢" is not compact. 

PROOF. By Proposition 2.3 we can assume that X is K-like for some regular 

r. The proof of Theorem 3 of [15] shows that (N, <]) has a r -Aronszajn  subtree. 

By Proposition 2.4, 2( is not compact. • 

It is shown in [15] that for possibly many (or even all) uncountable regular 

cardinals ~ there is a r-l ike,  recursively saturated, rather classless model of PA. 

For K = 1~, Kaufmann [8] and Shelah [17] had already proved such models exist 

absolutely. 

COROLLARY 2.9. There is an l~l-like, rather classless, recursively saturated 
model of PA which is not compact. 

3. The construction 

We begin this section by summarizing the results of [13] and [14]. 

Let W be a model of PA and n < to. A subset D C_ N" is dense if whenever 

ao, ai . . . .  , a,_~ E N, then there is (do, d~ . . . . .  d,_~) E D such that al <1 di for each 

i < n. Let I be some index set such that B~ is a branch of 2( for each i E / .  Then 

(Bi • i E I) is an indexed family of mutually generic branches of 2¢" iff whenever 

n < to, io, i~ . . . . .  i, ~ are distinct and D C_ N" is a definable dense set, then 

( B~ × B~, × . . .  × B~._~) A D ~ Q. 
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In [14] a recursive set @ = {Ok (x) : k < co} of formulas in the language of PA is 

defned,  This set ¢I) is used to construct extensions of models of PA in the 

following manner. Let (B i : i  E I) be an indexed family of mutually generic 

branches of ,N'. For each i E I let b~ be a new individual constant, and consider 

the theory 

E, = {~k (b,) : i E I, k < co} U {lh(b,) = lh(bj): i, j E I} 

U {a <1 b~ : a ~ Ba} U Th((N, a)a~N). 

This theory is complete and has a minimal model M, which is an end extension of 

X. For any J C_ I there is a unique model Mj, where N #  Mj < M, such that 

{bj : j  E J} = Mj f) {b~ :i  E I}. Each Ms is cofinal in M (so cf(M) = ~,). Further- 

more, if X E Class(Mj), then X A N is definable in (W,(Bj : j  E J)). 

We will say that M is the canonical extension of N by (B~ : i E I). 

Now let us consider a model J¢ and a tree (T, < )  of height a. Some mild 

normality conditions need to be required of T. We will impose upon T more 

than is needed. Let us say that T is normal if for each v < c~ the following hold: 

(1) if v =0 ,  t h e n [ T ~ l =  1; 

(2) if u is a limit ordinal and t E T~, then I{s E T. :~ =/}1 = 1 (where 

={r  I r < s/); 
(3) if ~, =/x +1 and t E T ~ ,  then I{s~r~:i=i}[<-_2. 

We will now build an extension of 3 r along T under the assumption that T is 

normal. This is accomplished by constructing an elementary chain (N~ : u < a ), 

and then setting M = U{J~ : i, < a}. Associated with each Jg~ is an indexed 

family (B, : t E T~) of mutually generic branches. 

Let No be some simple, conservation extension of N, so that cf()¢'0) = ~o. Let 

(B, : t E To) be an indexed family of mutually generic branches. 

Suppose we have 3rv with indexed family (B, : t  E T.) of mutually generic 

branches. Let 3r~+~ be the canonical extension of N~ by (B, : t  @ T~). Since 

cf(JV'~+l)=t~0, there is an indexed family (B, : t  E T~+~) of mutually generic 

branches such that if s E T., t E T.+~ and s < t, then b, ~ B,. 

Next suppose that v is a limit ordinal, and that for each p. < u we have 

constructed 3r, together with its associated indexed family (B~ : s E T,). Let 

N~ = U{N,. :/x < u}. For each t ~ T., let B, = U{B~ :s < t}. Then (B, : t E T~) 

is an indexed family of mutually generic branches of ~ .  

Finally, let M = U { W . : v < a } .  For each branch B of T, let XB = 

U{B, : t  ~B} .  Then (X~ :B  E[T])  is an indexed family of mutually generic 

branches of M. In particular, if M is built along T, then IClass(M)l _-> I[r] I. We 

refine this inequality in the following theorem. 
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THEOREM 3.1. Suppose (T, < )  is a normal tree such that h t ( T ) =  a, where 

cf(a)  => ~1, and suppose ~ is built along 7". Then every class of ~ is definable in 

(~, (xB : B ~ [ T])). 

PROOF. Let  X EClass(A/); we wish to show that X is definable in 

(all (XB : B ~ [ T])). 

For each v < a, X O N~ is definable in (Nv, (B, : t E T~)). Therefore,  there is 

some finite I C T~. such that X N N~ is definable in (2/',,, (B, : t E I)). Let L be the 

intersection of all such finite I. We claim that x n N~ is definable in 

(Xv,(B, : t  E L)). To verify this claim, it suffices to show that if L I'C_ T~ are 

finite and X n Nv is definable in both (2(,, (B, : t ~ I)) and (X,, (B, : t ~ I')), then 

X n N, is definable in (N~, (B, : t E I n I')). We will show this in a special, but 

typical, case. Suppose I = {s} and I '  = {t}, with s ~  t, and X N N,, definable in 

both (3fv, B~) and (X~,B,). Let ¢}(B~,x) and 4J(B,,x) be the corresponding 

defining formulas. Using the genericity of (B~, B,), there are conditions p, E B~ 

and P, CB,  such that (p~,p,) forces V x ( 4 ) ( B , x ) o O ( B , , x ) ) .  But then O~ must 

decide every instance of &(B~, x), so that a ~ X n N, iff p, forces & (B~, a). 

By Fodor's Theorem, there are /3 < a, n < w, a formula 

ch(x,y, Xo, Xi  . . . . .  X,_~), and an unbounded A C_ c~ which have the following 

properties whenever u E A. First of all, I L l =  n, so let L = {t0, t l , . . . ,  t,-l} be 

arranged so that B~ . . . . .  B .... are in lexicographical order. Set BT= B,,. Then, 

whenever, i < j < n, then By n No ~ B~ n N~. Finally, there is some a E N, such 

that 4)(x ,a ,B~,Br  . . . . .  B~._I) defines X NN~ in (?(~,Bg, B[ . . . .  ,B~,_I). 

Let a, be the least such a in the previous paragraph. Notice that if/x < u are 

both in A. then X N N. is definable in (A/'~, B;; N N~, B .  N N .  . . . . .  B ~. ~ N N~). 

Thus, in fact, B." = B i' n N~ for i < n. We now claim that if t z < u are both in A, 

then a~ =av .  Clearly, a~ _-<a~, since (X~,B~ . . . . .  B~ I ) < ( N . , B ~  . . . . .  B~-I). In 

the structure ( N . , B ~  . . . . .  B.~_I), the formulas &(x,a~,Bg . . . . .  B~. 1) and 

4)(x, a~. B~ . . . . .  B.~_~) both define the same set (namely X n N~), so they both 

define the same set (namely X n N~) in (.N., B~ . . . . .  B~_~). But then a~ =< a . .  

Therefore,  a~. = a~. 

Let a = a~ for u E A. Let B~ = U {B Y : v E A }. Then clearly 

(o(x,a, Bo . . . . .  B.-1) defines X in (N, Bo, B~ . . . . .  B.-1), completing the 

proof. • 

THEOREM 3.2. Let (T, < ) be a normal K-tree, for regular K, with no K- 

Aronszajn subtrees, and let J¢" be a model of PA with [N I < K. Suppose d~ is an 

extension of Af built along T. Then d~ is compact. 

PROOF. Clearly d,~ is K-like, so by Proposition 2.4 we need only show that 
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(M,<1) has no K-Aronszajn subtrees. To the contrary, suppose A is a K- 

Aronszajn subtree of (M,<1). Let {c~ :v<K}  be an antichain such that 

c ~ { x  E M : x  <=c for some c E A t - ;  {cr :/z < v}}. 

We can now use Fodor's Theorem to get some y < K, a term r(Xo, Xl . . . .  , x , )  

in the language of PA allowing constants from N~, and an unbounded S C K 

such that for each u E S  there are t~,0, t~,l . . . .  ,t~,, E T~ such that 

"c(b,~. o, b, ... . . . .  , b,~..)= c~. Furthermore, since T is a K-tree with no K-Aronszajn 

subtrees, we can assume there are branches B0, B~ . . . . .  B, E [T] such that for 

each i =< n and t E B,, b~ <3 b,~., for sufficiently large u E S. Thus, for each/z < K, 

all (n + 1)-tuples (b,~.o, b ..... . . . ,  b,o,.), for sufficiently large v E S, realize the same 

type over 3ft. Thus, all c~, for sufficiently rarge v E S, realize the same type over 
.Y" r. Thus, we get for each /.t < K a unique d,, such that lh (d , )= lh(c~)  and 

• d, <1 c~ for all sufficiently large v E S. Each dr E A, and if /x < u < K, then 

dr <1 &. Thus, {d, :/x < K} contradicts A being a K-Aronszajn subtree of 

(M, <1). • 

The following corollary to the two previous theorems is an improvement of 

the Theorem stated in the Introduction. 

COROLLARY 3.3. Suppose ), >-_ K > I~o are cardinals with K regular. Suppose "Z 

is some consistent extension of PA. Then the following are equivalent: 

(1) There is a BW(K) ordered field of cardinality ;t. 

(2) There is a BW(K) real-closed field of cardinality ,~ having an integer set 

which is a model of ~,. 

(3) There is a K-tree with exactly A branches and with no K-Aronszajn subtrees. 

PROOF. This is immediate from Corollary 1.6(2), Theorems 3.1 and 3.2, and 

the observation that the existence of a tree as in (3) is equivalent to the existence 

of a normal such tree. • 

Similarly, we can obtain the following result, which slightly improves Keisler 

[91. 

COROLLARY 3.4. Suppose ;t >= K > ~o are cardinals with K regular. Suppose "Z 

is some consistent extension.of PA. Then the following are equivalent: 

(1) There is a Scott complete, K-Archimedean ordered field of cardinality A. 

(2) There is a Scott complete, K-Archimedean real-closed field of cardinality ;t 

having an integer set which is a model of ~. 

(3) There is a K-tree with exactly )t branches. 

The equivalence of (3) and (4) in the next corollary was promised at the end of 

§2. 
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COROLLARY 3.5. Suppose K > no is regular and ~ is a consistent extension of 

PA. Then the following are equivalent: 

(1) There is a r-Archimedean ordered field which is not BW(K). 
(2) There is a r-Archimedean real-closed field which is not BW(K) having an 

integer set which is a model of E. 

(3) There is a r -Aronszajn  tree. 
(4) There is a K-like, rather classless model of ~ which is not compact. 

Thus, we see that if there is a K-like model of PA which is not compact, then 

there is one which is also rather classless. 

4. Addendum 

The techniques used to prove the theorems of the previous sections can also 

be used to prove analogous results in other settings. In this section we will briefly 

discuss p-valued fields. (Cherlin [1] is a good reference for this section.) 

We will consider fields K which are equipped with a valuation v : K--* G U 

{~}, where G is an ordered abelian group. A subset X C K is bounded iff there is 

some b E G such that v(x) => b for each x ~ X. The basic open sets for the 

topology on K are those of the form {x E K :  v(x -xo)>= b}, where xo E K and 

b E G. For a regular cardinal K we make the following definition: a valued field 

K is BW(K) iff [KI=>_K and every bounded K-sequence has a convergent 

K-subsequence. 

We fix for the remainder of this section a prime number p. A valued field K is 

p-valued if (1) F has characteristic 0, (2) the residue field is Fp, the prime field of 

characteristic p, and (3) v(p)  is the least positive element of G. In addition, if K 
satisfies Hensel's Lemma and G is a Z-group (that is, G is elementarily 

equivalent to (Z, + ,  < ) ,  the ordered group of integers), then K is p-adically 

closed. The archetypical p-adically closed field is Qp, the field of p-adic numbers. 

THEOREM 4.] (Ax-Kochen, Ershov). A valued field K is p-adically closed iff 

K -  Qp. 

The following analogue of our main result can be proved using much the same 

techniques. 

THEOREM 4.2. Suppose A >= K > no are cardinals with K regular. Then the 

following are equivalent: 

(1) There is a BW(K) p-adically closed field of cardinality A. 

(2) There is a K-tree with exactly A branches and with no K-Aronszajn subtrees. 
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PROOF. (Sketch) ( 1 ) ~  (2). The object is to construct a tree in a manner 

similar to the way Keisler trees were constructed in §1. Let K be the given field 

and G its value group. Then G has cofinality K, so let (c, :u  < K) be an 

increasing, cofinal sequence of positive elements of G. For each u < K let - , .  be 

an equivalence relation defined on K as follows: x - ~ y  iff v(x -y)_-> c,. Let T 

be the set of all equivalence classes of all the equivalence relations - , .  Then 

(T,_D) is a r - t r ee  having exactly A branches with no K-Aronszajn subtrees. 

(2) ~ (1). As in §3 let N ~ P A  be compact, have cardinality K, and have 

exactly A branches. From X construct Q~, the p-adic numbers of 3/'. This can be 

done, as in §2, by considering all formal infinite series Ei~Naip ~, where ai < p and 

{(i,a~):i E N } E C I a s s ( N ) .  In the usual way, one can show that Q X satisfies 

Hensel's Lemma (so by Theorem 4.1, x _  = Qp = Qp). Obviously, tQ~I A. It is easy 

to see that QpXis BW(r) .  • 

There are also corresponding analogues of Corollaries 3.4 and 3.5. 
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